- 1. Suppose that V, W are (possibly infinite-dimensional) vector spaces with norms $\|*\|_V$, $\|*\|_W$, giving a topology defined by the metric $d_V(x, y) =$ $\|x - y\|_V$ (similarly for W). Suppose further that W is complete. Suppose that $H \subseteq V$ is a vector subspace, and is dense in the metric topology. Show that if $L: H \to W$ is linear, with $\|Lx\|_W \leq C \|x\|_V$ for some constant C > 0 independent of $x \in H$, then there exists a unique extension to V of L, with the same bound.
- 2. We define a distribution as follows:

Suppose that f_n, f are smooth functions with compact support (i.e. $\in C_c^{\infty}(U)$) in an open set $U \subseteq \mathbb{R}^n$, and that all have support contained in the same compact set $K \subseteq U$.

Suppose further that all derivatives of all orders of f_n converge to those of f(uniformly). We then say that $f_n \to f$ in $C_c^{\infty}(U)$. A distribution is a linear map $\phi : C_c^{\infty}(U) \to \mathbb{R}$ such that $f_n \to f$ in $C_c^{\infty}(U)$ implies $\phi(f_n) \to \phi(f)$.

- (a) Show that given $g \in C(U)$, it holds that $\phi_g(f) = \int_U fg dx$ is a distribution. Similarly, $D^{\alpha} \phi_g(f) = (-1)^{|\alpha|} \int_U (D^{\alpha} f) g dx$ are distributions.
- (b) Use integration-by-parts (or the divergence theorem) to show that if $f, g \in C_c^{\infty}(U)$ then

$$D^{\alpha}\phi_q(f) = \phi_{D^{\alpha}q}(f)$$

- (c) Use Hoelder's inequality (Theorem 6.2 in Folland) to show that given $g \in L^2(U)$, it holds that $\phi_g(f) = \int_U fg dx$ is a distribution
- (d) Use Problem 1, and Folland theorem 6.15 to show that if $g \in L^2(U)$ and if

$$\|D^{\alpha}\phi_{g}(f)\|_{L^{2}(U)} \leq C \|f\|_{L^{2}(U)}$$

for some C > 0 then

$$D^{\alpha}\phi_g(f) = \int_U fhdx$$

for some $h \in L^2(U)$. You may assume that $C_c^{\infty}(U)$ is dense in $L^2(U)$.

(e) (Harder) Suppose that $g, h \in C(U)$, and suppose that

$$\phi_g(f) = \phi_h(f), \forall f \in C_c^\infty(U)$$

then h = g. (Hint: Suppose that h(x) - g(x) > 0, then $\{y : h(y) - g(y) > 0\}$ is open and non-empty, and recall the construction of a partition of unity)